Different generic functions for class MAMS.
generic.Rd
Generic functions for summarizing an object of class MAMS.
Usage
# S3 method for MAMS
print(x, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS
summary(object, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS
plot(x, col=NULL, pch=NULL, lty=NULL, main=NULL, xlab="Analysis",
ylab="Test statistic", ylim=NULL, type=NULL, las=1, ...)
# S3 method for MAMS.sim
print(x, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS.sim
summary(object, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS.stepdown
print(x, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS.stepdown
summary(object, digits=max(3, getOption("digits") - 4), ...)
# S3 method for MAMS.stepdown
plot(x, col=NULL, pch=NULL, lty=NULL, main=NULL, xlab="Analysis",
ylab="Test statistic", ylim=NULL, type=NULL, bty="n", las=1, ...)
Arguments
- x
An output object of class MAMS.
- digits
Number of significant digits to be printed.
- object
An output object of class MAMS.
- col
A specification for the default plotting color (default=
NULL
). Seepar
for more details.- pch
Either an integer specifying a symbol or a single character to be used as the default in plotting points (default=
NULL
). Seepar
for more details.- lty
A specification for the default line type to be used between analyses (default=
NULL
). Setting to zero supresses ploting of the lines. Seepar
for more details.- main
An overall title for the plot (default=
NULL
).- xlab
A title for the x axis (default=
"Analysis"
).- ylab
A title for the y axis (default=
"Test statistic"
).- ylim
Numeric vector of length 2, giving the y coordinates range (default=
NULL
).- type
Type of plot to be used (default=
NULL
). Seeplot
for more details.- bty
Should a box be drawn around the legend? The default
"n"
does not draw a box, the alternative option"o"
does.- las
A specification of the axis labeling style. The default
1
ensures the labels are always horizontal. See?par
for details.- ...
Further (graphical) arguments to be passed to methods.
Details
print.MAMS
produces a summary of an object from class MAMS including boundaries and requires sample size if initially requested.
summary.MAMS
produces same output as print.MAMS
.
plot.MAMS
produces as plot of the boundaries.
print.MAMS.sim
produces a summary of an object from class MAMS.sim including type-I-error and expected sample size.
summary.MAMS.sim
produces same output as print.MAMS.sim
.
print.MAMS.stepdown
produces a summary of an object from class MAMS including boundaries and requires sample size if initially requested.
summary.MAMS.stepdown
produces same output as print.stepdown.mams
.
plot.MAMS.stepdown
produces a plot of the boundaries. When used with stepdown.update
, pluses indicate observed values of test statistics.
References
Magirr D, Jaki T, Whitehead J (2012) A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection. Biometrika, 99(2), 494-501.
Stallard N, Todd S (2003) Sequential designs for phase III clinical trials incorporating treatment selection. Statistics in Medicine, 22(5), 689-703.
Magirr D, Stallard N, Jaki T (2014) Flexible sequential designs for multi-arm clinical trials. Statistics in Medicine, 33(19), 3269-3279.
Examples
# \donttest{
# 2-stage design with triangular boundaries
res <- mams(K=4, J=2, alpha=0.05, power=0.9, r=1:2, r0=1:2, p=0.65, p0=0.55,
ushape="triangular", lshape="triangular", nstart=30)
#>
#> i) find lower and upper boundaries
#>
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#>
#> ii) define alpha star
#> iii) perform sample size calculation
#> (maximum iteration number = 259)
#>
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> 50
#>
#>
print(res)
#> Design parameters for a 2 stage trial with 4 treatments
#>
#> Stage 1 Stage 2
#> Cumulative sample size per stage (control): 50 100
#> Cumulative sample size per stage (active): 50 100
#>
#> Maximum total sample size: 500
#>
#> Stage 1 Stage 2
#> Upper bound: 2.432 2.293
#> Lower bound: 0.811 2.293
summary(res)
#> Design parameters for a 2 stage trial with 4 treatments
#>
#> Stage 1 Stage 2
#> Cumulative sample size per stage (control): 50 100
#> Cumulative sample size per stage (active): 50 100
#>
#> Maximum total sample size: 500
#>
#> Stage 1 Stage 2
#> Upper bound: 2.432 2.293
#> Lower bound: 0.811 2.293
plot(res)
res <- mams.sim(nsim=10000, nMat=matrix(c(44, 88), nrow=2, ncol=5), u=c(3.068, 2.169),
l=c(0.000, 2.169), pv=c(0.65, 0.55, 0.55, 0.55), ptest=c(1:2, 4))
print(res)
#> Simulated error rates based on 10000 simulations
#>
#>
#> Prop. rejecting at least 1 hypothesis: 0.930
#> Prop. rejecting first hypothesis (Z_1>Z_2,...,Z_K) 0.908
#> Prop. rejecting hypotheses 1 or 2 or 4: 0.928
#> Expected sample size: 346.892
# 2-stage 3-treatments versus control design, all promising treatments are selected:
res <- stepdown.mams(nMat=matrix(c(10, 20), nrow=2, ncol=4),
alpha.star=c(0.01, 0.05), lb=0,
selection="all.promising")
print(res)
#> Design parameters for a 2 stage trial with 3 treatments
#>
#> Stage 1 Stage 2
#> Cumulative sample size (control): 10 20
#> Cumulative sample size per stage (treatment 1 ): 10 20
#> Cumulative sample size per stage (treatment 2 ): 10 20
#> Cumulative sample size per stage (treatment 3 ): 10 20
#>
#> Maximum total sample size: 80
#>
#>
#> Intersection hypothesis H_{ 1 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 2 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 1 2 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 1 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 2 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 1 2 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.69 2.10
#> Lower boundary 0.00 2.10
summary(res)
#> Design parameters for a 2 stage trial with 3 treatments
#>
#> Stage 1 Stage 2
#> Cumulative sample size (control): 10 20
#> Cumulative sample size per stage (treatment 1 ): 10 20
#> Cumulative sample size per stage (treatment 2 ): 10 20
#> Cumulative sample size per stage (treatment 3 ): 10 20
#>
#> Maximum total sample size: 80
#>
#>
#> Intersection hypothesis H_{ 1 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 2 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 1 2 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.33 1.67
#> Lower boundary 0.00 1.67
#>
#> Intersection hypothesis H_{ 1 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 2 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.56 1.95
#> Lower boundary 0.00 1.95
#>
#> Intersection hypothesis H_{ 1 2 3 }:
#>
#> Stage 1 Stage 2
#> Conditional error 0.01 0.05
#> Upper boundary 2.69 2.10
#> Lower boundary 0.00 2.10
plot(res)
# }