Generic summary function for class MAMS.
summary.MAMS.Rd
Produces a detailed summary of an object from class MAMS
Examples
# \donttest{
# 2-stage design with triangular boundaries
res <- mams(K=4, J=2, alpha=0.05, power=0.9, r=1:2, r0=1:2,
p=0.65, p0=0.55,
ushape="triangular", lshape="triangular", nstart=30)
#>
#> i) find lower and upper boundaries
#>
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#>
#> ii) define alpha star
#> iii) perform sample size calculation
#> (maximum iteration number = 259)
#>
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> .
#> 50
#>
#>
#> iv) run simulation
summary(res)
#>
#> ── MAMS design ─────────────────────────────────────────────────────────────────
#>
#> ── Design characteristics ──
#>
#> • Normally distributed endpoint
#> • Simultaneous stopping rules
#> • 2 stages
#> • 4 treatment arms
#> • 5% overall type I error
#> • 90% power of detecting Treatment 1 as the best arm
#> • Assumed effect sizes per treatment arm:
#>
#> | Under H1 | Under H0
#> abbr | cohen.d prob.scale | cohen.d prob.scale
#> Treatment 1 T1 | 0.545 0.65 | 0 0.5
#> Treatment 2 T2 | 0.178 0.55 | 0 0.5
#> Treatment 3 T3 | 0.178 0.55 | 0 0.5
#> Treatment 4 T4 | 0.178 0.55 | 0 0.5
#>
#> ── Limits ──
#>
#> Stage 1 Stage 2 shape
#> Upper bounds 2.432 2.293 triangular
#> Lower bounds 0.811 2.293 triangular
#>
#> ── Sample sizes ──
#>
#> | Expected (*)
#> Cumulated | Under H1 | Under H0
#> Stage 1 Stage 2 | low mid high | low mid high
#> Control 50 100 | 50 67.501 100 | 50 71.828 100
#> Treatment 1 50 100 | 50 67.141 100 | 50 59.587 100
#> Treatment 2 50 100 | 50 55.723 100 | 50 59.489 100
#> Treatment 3 50 100 | 50 55.759 100 | 50 59.540 100
#> Treatment 4 50 100 | 50 55.759 100 | 50 59.498 100
#> TOTAL 250 500 | 250 301.883 500 | 250 309.942 500
#>
#> ── Futility cumulated probabilities (§) ──
#>
#> Under H1 | Under H0
#> Stage 1 Stage 2 | Stage 1 Stage 2
#> T1 rejected 0.029 0.066 | 0.789 0.973
#> T2 rejected 0.467 0.561 | 0.792 0.975
#> T3 rejected 0.466 0.561 | 0.790 0.973
#> T4 rejected 0.467 0.563 | 0.791 0.974
#> Any rejected 0.719 0.747 | 0.964 0.989
#> All rejected 0.022 0.064 | 0.539 0.950
#>
#> ── Efficacy cumulated probabilities (§) ──
#>
#> Under H1 | Under H0
#> Stage 1 Stage 2 | Stage 1 Stage 2
#> T1 rejected 0.616 0.921 | 0.007 0.015
#> T2 rejected 0.061 0.081 | 0.007 0.014
#> T3 rejected 0.060 0.080 | 0.007 0.015
#> T4 rejected 0.062 0.081 | 0.007 0.014
#> Any rejected 0.628 0.936 | 0.024 0.050
#> T1 is best 0.600 0.903 | 0.006 0.013
#> All rejected 0.006 0.007 | 0.000 0.000
#>
#> • Estimated prob. T1 is best (§) = 90.29%, [90.03, 90.548] 95% CI
#> • Estimated overall type I error (*) = 4.982%, [4.792, 5.174] 95% CI
#>
#> (*) Operating characteristics estimated by a simulation
#> considering 50000 Monte Carlo samples
#> ────────────────────────────────────────────────────────────────────────────────
# }